Наукова електронна бібліотека
періодичних видань НАН України

Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Sheftel, M.B.
dc.contributor.author Malykh, A.A.
dc.date.accessioned 2019-02-21T07:22:47Z
dc.date.available 2019-02-21T07:22:47Z
dc.date.issued 2013
dc.identifier.citation Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors / M.B. Sheftel, A.A. Malykh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 28 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 35Q75; 83C15
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.075
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149367
dc.description.abstract We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA) and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain. uk_UA
dc.description.sponsorship We thank our referees for their encouragement and criticism which hopefully improved our paper. The research of M.B. Sheftel was supported in part by the research grant from Bo˘gazi¸ci University Scientific Research Fund (BAP), research project No. 6324. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис