Показати простий запис статті
dc.contributor.author |
Sheftel, M.B. |
|
dc.contributor.author |
Malykh, A.A. |
|
dc.date.accessioned |
2019-02-21T07:22:47Z |
|
dc.date.available |
2019-02-21T07:22:47Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors / M.B. Sheftel, A.A. Malykh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 28 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35Q75; 83C15 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.075 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149367 |
|
dc.description.abstract |
We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA) and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain. |
uk_UA |
dc.description.sponsorship |
We thank our referees for their encouragement and criticism which hopefully improved our
paper. The research of M.B. Sheftel was supported in part by the research grant from Bo˘gazi¸ci
University Scientific Research Fund (BAP), research project No. 6324. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті