Показати простий запис статті

dc.contributor.author Rosenberg, J.
dc.date.accessioned 2019-02-21T07:21:13Z
dc.date.available 2019-02-21T07:21:13Z
dc.date.issued 2013
dc.identifier.citation Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 46L87; 58B34; 46L08; 46L08
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.071
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149363
dc.description.abstract We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. This research was supported by NSF grant DMS-1206159. The author thanks the referees and the participants at the Fields Institute Focus Program for several interesting comments and discussions. I would like to thank Joakim Arnlind for pointing out a mistake in the original formulation of Proposition 3.4 uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Levi-Civita's Theorem for Noncommutative Tori uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис