Показати простий запис статті

dc.contributor.author Mellouli, N.
dc.contributor.author Nibirantiza, A.
dc.contributor.author Radoux, F.
dc.date.accessioned 2019-02-21T07:08:09Z
dc.date.available 2019-02-21T07:08:09Z
dc.date.issued 2013
dc.identifier.citation spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53D10; 17B66; 17B10
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.055
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149350
dc.description.abstract We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q. uk_UA
dc.description.sponsorship It is a pleasure to thank T. Leuther, P. Mathonet, J.-P. Michel and V. Ovsienko for numerous fruitful discussions and for their interest in our work. We also warmly thank the referees for their suggestions and remarks which considerably improved the paper. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис