Показати простий запис статті
dc.contributor.author |
Morita, T. |
|
dc.date.accessioned |
2019-02-21T07:04:56Z |
|
dc.date.available |
2019-02-21T07:04:56Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
A Connection Formula for the q-Confluent Hypergeometric Function / T. Morita // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33D15; 34M40; 39A13 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.050 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149343 |
|
dc.description.abstract |
We show a connection formula for the q-confluent hypergeometric functions ₂φ₁(a,b;0;q,x). Combining our connection formula with Zhang's connection formula for ₂φ₀(a,b;−;q,x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit q→1− of our connection formula. |
uk_UA |
dc.description.sponsorship |
The author would like to give heartfelt thanks to Professor Yousuke Ohyama who provided
carefully considered feedback and many valuable comments. The author also would like to
thank the anonymous referees for their helpful comments |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Connection Formula for the q-Confluent Hypergeometric Function |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті