Наукова електронна бібліотека
періодичних видань НАН України

Positive Definite Functions on Complex Spheres and their Walks through Dimensions

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Massa, E.
dc.contributor.author Peron, A.P.
dc.contributor.author Porcu, E.
dc.date.accessioned 2019-02-19T19:31:13Z
dc.date.available 2019-02-19T19:31:13Z
dc.date.issued 2017
dc.identifier.citation Positive Definite Functions on Complex Spheres and their Walks through Dimensions / E. Massa, A.P. Peron, E. Porcu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 49 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 42A82; 42C10; 42C05; 30E10; 62M30
dc.identifier.other DOI:10.3842/SIGMA.2017.088
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149263
dc.description.abstract We provide walks through dimensions for isotropic positive definite functions defined over complex spheres. We show that the analogues of Montée and Descente operators as proposed by Beatson and zu Castell [J. Approx. Theory 221 (2017), 22-37] on the basis of the original Matheron operator [Les variables régionalisées et leur estimation, Masson, Paris, 1965], allow for similar walks through dimensions. We show that the Montée operators also preserve, up to a constant, strict positive definiteness. For the Descente operators, we show that strict positive definiteness is preserved under some additional conditions, but we provide counterexamples showing that this is not true in general. We also provide a list of parametric families of (strictly) positive definite functions over complex spheres, which are important for several applications. uk_UA
dc.description.sponsorship The authors gratefully thank the anonymous referees for the constructive comments and recommendations which helped to greatly improve the paper. Eugenio Massa was supported by grant #2014/25398-0, S˜ao Paulo Research Foundation (FAPESP) and grant #308354/2014-1, CNPq/Brazil. Ana P. Peron was supported by grants #2016/03015-7 and #2014/25796-5, S˜ao Paulo Research Foundation (FAPESP). Emilio Porcu was supported by grant FONDECYT #1170290 from the Chilean government. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Positive Definite Functions on Complex Spheres and their Walks through Dimensions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис