Показати простий запис статті
dc.contributor.author |
Khongsap, T. |
|
dc.contributor.author |
Wang, W. |
|
dc.date.accessioned |
2019-02-19T19:21:36Z |
|
dc.date.available |
2019-02-19T19:21:36Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type / T. Khongsap, W. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 20C08 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149249 |
|
dc.description.abstract |
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. This research is partially supported by NSF grant DMS-0800280. The main results of this paper for type A were obtained at MSRI in 2006. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті