Показати простий запис статті
dc.contributor.author |
Valiquette, F. |
|
dc.date.accessioned |
2019-02-19T19:04:08Z |
|
dc.date.available |
2019-02-19T19:04:08Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53A55; 58A15 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.029 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149233 |
|
dc.description.abstract |
Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of G-structures. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Solving Local Equivalence Problems with the Equivariant Moving Frame Method |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті