Наукова електронна бібліотека
періодичних видань НАН України

A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Gopalkrishnan, M.
dc.contributor.author Miller, E.
dc.contributor.author Shiu, A.
dc.date.accessioned 2019-02-19T19:02:47Z
dc.date.available 2019-02-19T19:02:47Z
dc.date.issued 2013
dc.identifier.citation A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics / M. Gopalkrishnan, E. Miller, A. Shiu // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 34A60; 80A30; 92C45; 37B25; 34D23; 37C10; 37C15; 92E20; 92C42; 54B30; 18B30
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.025
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149229
dc.description.abstract Motivated by questions in mass-action kinetics, we introduce the notion of vertexical family of differential inclusions. Defined on open hypercubes, these families are characterized by particular good behavior under projection maps. The motivating examples are certain families of reaction networks – including reversible, weakly reversible, endotactic, and strongly endotactic reaction networks – that give rise to vertexical families of mass-action differential inclusions. We prove that vertexical families are amenable to structural induction. Consequently, a trajectory of a vertexical family approaches the boundary if and only if either the trajectory approaches a vertex of the hypercube, or a trajectory in a lower-dimensional member of the family approaches the boundary. With this technology, we make progress on the global attractor conjecture, a central open problem concerning mass-action kinetics systems. Additionally, we phrase mass-action kinetics as a functor on reaction networks with variable rates. uk_UA
dc.description.sponsorship MG was supported by a Ramanujan fellowship from the Department of Science and Technology, India, and, during a semester-long stay at Duke University, by the Duke MathBio RTG grant NSF DMS-0943760. EM had support from NSF grant DMS-1001437. AS was supported by an NSF postdoctoral fellowship DMS-1004380. The authors thank David F. Anderson, Gheorghe Craciun, and Casian Pantea for helpful discussions, and Duke University where many of the conversations occurred. The authors also thank the two referees, whose perceptive and insightful comments improved this work. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис