Наукова електронна бібліотека
періодичних видань НАН України

On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Cheh, J.
dc.date.accessioned 2019-02-19T18:27:40Z
dc.date.available 2019-02-19T18:27:40Z
dc.date.issued 2013
dc.identifier.citation On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces / J. Cheh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53A55; 53B25
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.036
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149192
dc.description.abstract We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant structure. As a corollary, we note that the differential order of a minimal complete set of congruence invariants is bounded by k+1. We demonstrate the method by rediscovering the speed and curvature invariants of Euclidean planar curves, the Schwarzian derivative of holomorphic immersions in the complex projective line, and equivalents of the first and second fundamental forms of surfaces in R³ subject to rotations. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. This work has benefited from the discussions held in the Dif ferential Geometry and Lie Theory seminars at the University of Toledo; the author would like to thank the organizers and participants of the seminars. Also, the anonymous referees’ critical and yet helpful comments have contributed significantly in the process of revising and improving the paper; the author is very grateful to the referees. It is hoped that this work serves to reflect, although only to a small extent limited by the author’s meager knowledge, the author’s appreciation of the introduction by Professor Peter Olver to the marvelous unifying philosophy and technology of symmetry, invariance, and equivalence. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис