Показати простий запис статті
dc.contributor.author |
McRae, A.S. |
|
dc.date.accessioned |
2019-02-19T17:41:31Z |
|
dc.date.available |
2019-02-19T17:41:31Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Clifford Fibrations and Possible Kinematics / A.S. McRae // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 11E88; 15A66; 53A17 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149149 |
|
dc.description.abstract |
Following Herranz and Santander [Herranz F.J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998), 59-84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967), 1605-1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Clifford Fibrations and Possible Kinematics |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті