Показати простий запис статті

dc.contributor.author McRae, A.S.
dc.date.accessioned 2019-02-19T17:41:31Z
dc.date.available 2019-02-19T17:41:31Z
dc.date.issued 2009
dc.identifier.citation Clifford Fibrations and Possible Kinematics / A.S. McRae // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 12 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 11E88; 15A66; 53A17
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149149
dc.description.abstract Following Herranz and Santander [Herranz F.J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998), 59-84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967), 1605-1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Clifford Fibrations and Possible Kinematics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис