Показати простий запис статті

dc.contributor.author Fox, D.
dc.date.accessioned 2019-02-19T17:36:22Z
dc.date.available 2019-02-19T17:36:22Z
dc.date.issued 2009
dc.identifier.citation Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 35J05; 35J25; 53B25
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149134
dc.description.abstract Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary g(Sn–1). The proof uses standard linear elliptic theory to produce an integral manifold G: Dn → M and the completeness of the space of conservation laws to show that this candidate has g(Sn–1) as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in Cm in the local case. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Boundaries of Graphs of Harmonic Functions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис