Показати простий запис статті
dc.contributor.author |
Fox, D. |
|
dc.date.accessioned |
2019-02-19T17:36:22Z |
|
dc.date.available |
2019-02-19T17:36:22Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 35J05; 35J25; 53B25 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149134 |
|
dc.description.abstract |
Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary g(Sn–1). The proof uses standard linear elliptic theory to produce an integral manifold G: Dn → M and the completeness of the space of conservation laws to show that this candidate has g(Sn–1) as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in Cm in the local case. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Boundaries of Graphs of Harmonic Functions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті