Показати простий запис статті
dc.contributor.author |
Scharlach, C. |
|
dc.date.accessioned |
2019-02-19T17:29:18Z |
|
dc.date.available |
2019-02-19T17:29:18Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2 / C. Scharlach // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 53A15; 53B30 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149115 |
|
dc.description.abstract |
An affine hypersurface M is said to admit a pointwise symmetry, if there exists a subgroup G of Aut(TpM) for all p ∈ M, which preserves (pointwise) the affine metric h, the difference tensor K and the affine shape operator S. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e. S = HId (and thus S is trivially preserved). In Part 1 we found the possible symmetry groups G and gave for each G a canonical form of K. We started a classification by showing that hyperspheres admitting a pointwise Z₂ × Z₂ resp. R-symmetry are well-known, they have constant sectional curvature and Pick invariant J < 0 resp. J = 0. Here, we continue with affine hyperspheres admitting a pointwise Z₃- or SO(2)-symmetry. They turn out to be warped products of affine spheres (Z₃) or quadrics (SO(2)) with a curve. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. Partially supported by the DFG-Project PI 158/4-5 ‘Geometric Problems and Special PDEs’. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2 |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті