Показати простий запис статті
dc.contributor.author |
Veloso, Jose Miguel Martins |
|
dc.date.accessioned |
2019-02-19T17:25:25Z |
|
dc.date.available |
2019-02-19T17:25:25Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 58H05; 58H10 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149105 |
|
dc.description.abstract |
We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. I would like to thank the referees for the several suggestions to improve this paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Isomorphism of Intransitive Linear Lie Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті