Показати простий запис статті

dc.contributor.author Kochan, D.
dc.date.accessioned 2019-02-19T13:12:28Z
dc.date.available 2019-02-19T13:12:28Z
dc.date.issued 2008
dc.identifier.citation Noncommutative Lagrange Mechanics / D. Kochan // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 13 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 70G45; 46L55; 53B05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149039
dc.description.abstract It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric) specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling) is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term). uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the 3-rd Microconference “Analytic and Algebraic Methods III”. This research was supported in part by MSMT ˇ CR grant LC06002, ESF projects: JPD 3 2005/NP1-013 and JPD 3BA 2005/1-034 and VEGA Grant 1/3042/06. The author is thankful to Pavel Exner, Miloslav Znojil and Jaroslav Dittrich for their kindness and hospitality during the author’s short-time fellowship at the Doppler Institute in the autumn 2006. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Noncommutative Lagrange Mechanics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис