Показати простий запис статті
dc.contributor.author |
Honegger, R. |
|
dc.contributor.author |
Rieckers, A. |
|
dc.contributor.author |
Schlafer, L. |
|
dc.date.accessioned |
2019-02-19T13:11:12Z |
|
dc.date.available |
2019-02-19T13:11:12Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras / R. Honegger, A. Rieckers, L. Schlafer // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 61 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 46L65; 47L90; 81R15 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149035 |
|
dc.description.abstract |
C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general) infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Deformation Quantization. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті