Показати простий запис статті
dc.contributor.author |
Vizman, C. |
|
dc.date.accessioned |
2019-02-19T13:10:41Z |
|
dc.date.available |
2019-02-19T13:10:41Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 58D05; 35Q35 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149033 |
|
dc.description.abstract |
We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). This work was done with the financial support of Romanian Ministery of Education and Research under the grant CNCSIS 95GR/2007. I acknowledge the support from the ICTP Of fice of External Activities for attending the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” in Kyiv. I am most grateful to Tudor Ratiu and Francois Gay-Balmaz for their preprints and for very good suggestions, and to the referees for their very substantial and constructive comments. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Geodesic Equations on Diffeomorphism Groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті