Наукова електронна бібліотека
періодичних видань НАН України

Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Vacaru, S.I.
dc.date.accessioned 2019-02-19T12:56:53Z
dc.date.available 2019-02-19T12:56:53Z
dc.date.issued 2008
dc.identifier.citation Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics / S.I. Vacaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 45 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 53A99; 53B40; 53C21; 53C12; 53C44; 53Z05; 83C20; 83D05; 83C99
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149011
dc.description.abstract We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The work is performed during a visit at Fields Institute. Author is grateful to Professors M. Anastasiei and J. Mof fat for kind support. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис