Показати простий запис статті
dc.contributor.author |
Ren, G. |
|
dc.contributor.author |
Liu, L. |
|
dc.date.accessioned |
2019-02-19T12:47:17Z |
|
dc.date.available |
2019-02-19T12:47:17Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Liouville Theorem for Dunkl Polyharmonic Functions / G. Ren, L. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліор.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 33C52; 31A30; 35C10 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148992 |
|
dc.description.abstract |
Assume that f is Dunkl polyharmonic in Rn (i.e. (Δh)p f = 0 for some integer p, where Δh is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynomial of degree ≤ s for s ≥ 2p – 2 is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The authors would like to thank the referees for their useful comments. The research is supported by the Unidade de Investiga¸c˜ao “Matem´atica e Aplica¸c˜oes” of University of Aveiro, and by the NNSF of China (No. 10771201), NCET-05-0539. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Liouville Theorem for Dunkl Polyharmonic Functions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті