Показати простий запис статті

dc.contributor.author Ren, G.
dc.contributor.author Liu, L.
dc.date.accessioned 2019-02-19T12:47:17Z
dc.date.available 2019-02-19T12:47:17Z
dc.date.issued 2008
dc.identifier.citation Liouville Theorem for Dunkl Polyharmonic Functions / G. Ren, L. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліор.: 17 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 33C52; 31A30; 35C10
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148992
dc.description.abstract Assume that f is Dunkl polyharmonic in Rn (i.e. (Δh)p f = 0 for some integer p, where Δh is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynomial of degree ≤ s for s ≥ 2p – 2 is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The authors would like to thank the referees for their useful comments. The research is supported by the Unidade de Investiga¸c˜ao “Matem´atica e Aplica¸c˜oes” of University of Aveiro, and by the NNSF of China (No. 10771201), NCET-05-0539. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Liouville Theorem for Dunkl Polyharmonic Functions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис