Наукова електронна бібліотека
періодичних видань НАН України

Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Onodera, E.
dc.date.accessioned 2019-02-19T12:45:19Z
dc.date.available 2019-02-19T12:45:19Z
dc.date.issued 2008
dc.identifier.citation Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces / E. Onodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 35Q55; 35Q35; 53Z05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148988
dc.description.abstract We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving frame, and reduce the equation with values in the induced bundle to a complex valued equation which is easy to handle. We also discuss the relationship between our reduction and the theory of linear dispersive partial differential equations. uk_UA
dc.description.sponsorship The author expresses gratitude to Hiroyuki Chihara for several discussions and valuable advice. Also, thanks to the referees for carefully reading the manuscript. The author is supported by the JSPS Research Fellowships for Young Scientists and the JSPS Grant-in-Aid for Scientific Research No.19·3304. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис