Показати простий запис статті

dc.contributor.author Zhang, H.
dc.date.accessioned 2019-02-18T18:16:12Z
dc.date.available 2019-02-18T18:16:12Z
dc.date.issued 2017
dc.identifier.citation Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 17B37; 17B10; 81R50
dc.identifier.other DOI:10.3842/SIGMA.2017.066
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148732
dc.description.abstract We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group. uk_UA
dc.description.sponsorship The author thanks Vyjayanthi Chari, Giovanni Felder, David Hernandez, Masaki Kashiwara, Eugene Mukhin, Zengo Tsuboi, and Weiqiang Wang for interesting discussions. He is supported by the National Center of Competence in Research SwissMAP – The Mathematics of Physics of the Swiss National Science Foundation. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Asymptotic Representations of Quantum Affine Superalgebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис