Показати простий запис статті

dc.contributor.author Miller, P.D.
dc.contributor.author Sheng, Y.
dc.date.accessioned 2019-02-18T18:15:38Z
dc.date.available 2019-02-18T18:15:38Z
dc.date.issued 2017
dc.identifier.citation Rational Solutions of the Painlevé-II Equation Revisited / P.D. Miller, Y. Sheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 39 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 33E17; 34M55; 34M56; 35Q15; 37K15; 37K35; 37K40
dc.identifier.other DOI:10.3842/SIGMA.2017.065
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148731
dc.description.abstract The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Symmetries and Integrability of Dif ference Equations. The full collection is available at http://www.emis.de/journals/SIGMA/SIDE12.html. P.D. Miller was supported during the preparation of this paper by the National Science Foundation under grant DMS-1513054. The authors are grateful to Thomas Bothner for many useful discussions. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Rational Solutions of the Painlevé-II Equation Revisited uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис