Показати простий запис статті

dc.contributor.author Rossi, P.
dc.date.accessioned 2019-02-18T18:14:12Z
dc.date.available 2019-02-18T18:14:12Z
dc.date.issued 2017
dc.identifier.citation Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. uk_UA
dc.identifier.isbn DOI:10.3842/SIGMA.2017.060
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14H10; 14H70; 37K10
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148729
dc.description.abstract This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. This paper originates in part from my Habilitation m´emoire [34] and in part from an introductory talk I gave at the RAQIS’16 conference held at Geneva, Switzerland, in August 2016. I would like to express my gratitude to its organizers. Moreover I would like to thank my direct collaborators on the DR hierarchy project, A. Buryak, B. Dubrovin and J. Gu´er´e, and the people who supported us with advice and insight, among the others Dimitri Zvonkine, Rahul Pandharipande and Yakov Eliashberg. During this work I was partially supported by a Chaire CNRS/Enseignement superieur 2012–2017 grant. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Integrability, Quantization and Moduli Spaces of Curves uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис