Показати простий запис статті
dc.contributor.author |
Brouwer, A.E. |
|
dc.contributor.author |
Popoviciu, M. |
|
dc.date.accessioned |
2019-02-18T18:08:45Z |
|
dc.date.available |
2019-02-18T18:08:45Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 13A15; 68W30 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.075 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148715 |
|
dc.description.abstract |
Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
The second author is partially supported by the Swiss National Science Foundation. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Sylvester versus Gundelfinger |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті