Наукова електронна бібліотека
періодичних видань НАН України

Time-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Burlak, G.
dc.contributor.author Rabinovich, V.
dc.date.accessioned 2019-02-18T17:54:31Z
dc.date.available 2019-02-18T17:54:31Z
dc.date.issued 2012
dc.identifier.citation Time-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources / G. Burlak, V. Rabinovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 57 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 78A25; 78A35
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.096
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148687
dc.description.abstract The time-frequency integrals and the two-dimensional stationary phase method are applied to study the electromagnetic waves radiated by moving modulated sources in dispersive media. We show that such unified approach leads to explicit expressions for the field amplitudes and simple relations for the field eigenfrequencies and the retardation time that become the coupled variables. The main features of the technique are illustrated by examples of the moving source fields in the plasma and the Cherenkov radiation. It is emphasized that the deeper insight to the wave effects in dispersive case already requires the explicit formulation of the dispersive material model. As the advanced application we have considered the Doppler frequency shift in a complex single-resonant dispersive metamaterial (Lorenz) model where in some frequency ranges the negativity of the real part of the refraction index can be reached. We have demonstrated that in dispersive case the Doppler frequency shift acquires a nonlinear dependence on the modulating frequency of the radiated particle. The detailed frequency dependence of such a shift and spectral behavior of phase and group velocities (that have the opposite directions) are studied numerically. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. The work of authors is partially supported by PROMEP, grant Redes CA 2011–2012. The work of G.B. is partially supported by CONACyT grant 169496. The work of V.R. was partially supported by CONACyT grant 179872. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Time-Frequency Integrals and the Stationary Phase Method in Problems of Waves Propagation from Moving Sources uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис