Показати простий запис статті

dc.contributor.author Akhtar, M.
dc.contributor.author Coates, T.
dc.contributor.author Galkin, S.
dc.contributor.author Kasprzyk, A.M.
dc.date.accessioned 2019-02-18T17:38:16Z
dc.date.available 2019-02-18T17:38:16Z
dc.date.issued 2012
dc.identifier.citation Minkowski Polynomials and Mutations / M. Akhtar, T. Coates, S. Galkin, A.M. Kasprzyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 52B20; 16S34; 14J33
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.094
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148658
dc.description.abstract Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials f in n variables. In particular we give a combinatorial description of mutation acting on the Newton polytope P of f, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of P, or in terms of piecewise-linear transformations acting on the dual polytope P* (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of f. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. We thank Alessio Corti and Vasily Golyshev for many useful conversations, the referees for perceptive and helpful comments, John Cannon for providing copies of the computer algebra software Magma, and Andy Thomas for technical assistance. This research is supported by a Royal Society University Research Fellowship; ERC Starting Investigator Grant number 240123; the Leverhulme Trust; Kavli Institute for the Physics and Mathematics of the Universe (WPI); World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Grant-in-Aid for Scientific Research (10554503) from Japan Society for Promotion of Science and Grant of Leading Scientific Schools (N.Sh. 4713.2010.1); and EPSRC grant EP/I008128/1. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Minkowski Polynomials and Mutations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис