Показати простий запис статті
dc.contributor.author |
Rennie, A. |
|
dc.contributor.author |
Sims, A. |
|
dc.date.accessioned |
2019-02-18T16:51:26Z |
|
dc.date.available |
2019-02-18T16:51:26Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Non-Commutative Vector Bundles for Non-Unital Algebras / A. Rennie, A. Sims // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 57R22; 46L85 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.041 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148641 |
|
dc.description.abstract |
We revisit the characterisation of modules over non-unital C∗-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutative case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index. |
uk_UA |
dc.description.sponsorship |
This research was supported by Australian Research Council grant DP150101595. It was motivated by questions arising in projects with our collaborators Francesca Arici, Magnus Gof feng,
Bram Mesland and Dave Robertson, and we thank them for all that we have learned from
them. We are very grateful to the anonymous referee who read the manuscript very closely and
made numerous very helpful suggestions that have significantly strengthened our results and
streamlined our proofs. Thanks, whoever you are. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Non-Commutative Vector Bundles for Non-Unital Algebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті