Показати простий запис статті
dc.contributor.author |
Dunkl, C.F. |
|
dc.date.accessioned |
2019-02-18T16:50:12Z |
|
dc.date.available |
2019-02-18T16:50:12Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33C52; 32W50; 35F35; 20C30; 42B05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.040 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148638 |
|
dc.description.abstract |
For each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one called the contravariant form and the other is with respect to a matrix-valued measure on the N-torus. The latter is valid for the parameter lying in an interval about zero which depends on the module. The author in a previous paper [SIGMA 12 (2016), 033, 27 pages] proved the existence of the measure and that its absolutely continuous part satisfies a system of linear differential equations. In this paper the system is analyzed in detail. The N-torus is divided into (N−1)! connected components by the hyperplanes xi=xj, i<j, which are the singularities of the system. The main result is that the orthogonality measure has no singular part with respect to Haar measure, and thus is given by a matrix function times Haar measure. This function is analytic on each of the connected components. |
uk_UA |
dc.description.sponsorship |
Some of these results were presented at the conference “Dunkl operators, special functions and
harmonic analysis” held at Universit¨at Paderborn, Germany, August 8–12, 2016. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті