Наукова електронна бібліотека
періодичних видань НАН України

Twists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groups

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Gomi, K.
dc.date.accessioned 2019-02-18T16:44:13Z
dc.date.available 2019-02-18T16:44:13Z
dc.date.issued 2017
dc.identifier.citation Twists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groups / K. Gomi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53C08; 55N91; 20H15; 81T45
dc.identifier.other DOI:10.3842/SIGMA.2017.014
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148623
dc.description.abstract A twist is a datum playing a role of a local system for topological K-theory. In equivariant setting, twists are classified into four types according to how they are realized geometrically. This paper lists the possible types of twists for the torus with the actions of the point groups of all the 2-dimensional space groups (crystallographic groups), or equivalently, the torus with the actions of all the possible finite subgroups in its mapping class group. This is carried out by computing Borel's equivariant cohomology and the Leray-Serre spectral sequence. As a byproduct, the equivariant cohomology up to degree three is determined in all cases. The equivariant cohomology with certain local coefficients is also considered in relation to the twists of the Freed-Moore K-theory. uk_UA
dc.description.sponsorship I would like to thank K. Shiozaki and M. Sato for valuable discussions. I would also thank G.C. Thiang, D. Tamaki, anonymous referees and an editor for helpful criticisms and comments. This work is supported by JSPS KAKENHI Grant Number JP15K04871. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Twists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groups uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис