Показати простий запис статті
dc.contributor.author |
Takasaki, K. |
|
dc.contributor.author |
Nakatsu, T. |
|
dc.date.accessioned |
2019-02-18T16:34:02Z |
|
dc.date.available |
2019-02-18T16:34:02Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
q -Difference Kac-Schwarz Operators in Topological String Theory / K. Takasaki, T. Nakatsu // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 67 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 37K10; 39A13; 81T30 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.009 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148611 |
|
dc.description.abstract |
The perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector |W⟩ in the fermionic Fock space that represents a point W of the Sato Grassmannian. |W⟩ is generated from the vacuum vector |0⟩ by an operator g on the Fock space. g determines an operator G on the space V=C((x)) of Laurent series in which W is realized as a linear subspace. |
uk_UA |
dc.description.sponsorship |
The authors are grateful to Motohico Mulase for discussion and encouragement. We owe him
the idea that an integrable hierarchy may be thought of as a mirror map. This work is partly
supported by JSPS Kakenhi Grant No. 25400111 and No. 15K04912. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
q -Difference Kac-Schwarz Operators in Topological String Theory |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті