Показати простий запис статті

dc.contributor.author Ferrario, D.L.
dc.date.accessioned 2019-02-18T16:25:23Z
dc.date.available 2019-02-18T16:25:23Z
dc.date.issued 2017
dc.identifier.citation Central Configurations and Mutual Differences / D.L. Ferrario // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 17 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37C25; 70F10
dc.identifier.other DOI:10.3842/SIGMA.2017.021
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148595
dc.description.abstract Central configurations are solutions of the equations λmjqj=∂U/∂qj, where U denotes the potential function and each qj is a point in the d-dimensional Euclidean space E≅Rd, for j=1,…,n. We show that the vector of the mutual differences qij=qi−qj satisfies the equation −(λ/α)q=Pm(Ψ(q)), where Pm is the orthogonal projection over the spaces of 1-cocycles and Ψ(q)=q/|q|α+2. It is shown that differences qij of central configurations are critical points of an analogue of U, defined on the space of 1-cochains in the Euclidean space E, and restricted to the subspace of 1-cocycles. Some generalizations of well known facts follow almost immediately from this approach. uk_UA
dc.description.sponsorship Work partially supported by the project ERC Advanced Grant 2013 n. 339958 “Complex Patterns for Strongly Interacting Dynamical Systems COMPAT”. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Central Configurations and Mutual Differences uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис