Показати простий запис статті
dc.contributor.author |
Bogoliubov, N.M. |
|
dc.contributor.author |
Malyshev, C. |
|
dc.date.accessioned |
2019-02-18T16:17:21Z |
|
dc.date.available |
2019-02-18T16:17:21Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Zero Range Process and Multi-Dimensional Random Walks / N.M Bogoliubov, C. Malyshev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 05A19; 05E05; 82B23 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.056 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148588 |
|
dc.description.abstract |
The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions. |
uk_UA |
dc.description.sponsorship |
This work was supported by RFBR grant 16-01-00296. N.M.B. acknowledges the Simons Center
for Geometry and Physics, Stony Brook University at which some of the research for this paper
was performed. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Zero Range Process and Multi-Dimensional Random Walks |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті