Показати простий запис статті

dc.contributor.author Fujii, S.
dc.contributor.author Minabe, S.
dc.date.accessioned 2019-02-18T16:15:12Z
dc.date.available 2019-02-18T16:15:12Z
dc.date.issued 2017
dc.identifier.citation A Combinatorial Study on Quiver Varieties / S. Fujii, S. Minabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 58 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14C05; 14D21; 05A19; 05E10
dc.identifier.other DOI:10.3842/SIGMA.2017.052
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148584
dc.description.abstract This is an expository paper which has two parts. In the first part, we study quiver varieties of affine A-type from a combinatorial point of view. We present a combinatorial method for obtaining a closed formula for the generating function of Poincaré polynomials of quiver varieties in rank 1 cases. Our main tools are cores and quotients of Young diagrams. In the second part, we give a brief survey of instanton counting in physics, where quiver varieties appear as moduli spaces of instantons, focusing on its combinatorial aspects. uk_UA
dc.description.sponsorship The authors would like to thank H. Awata, H. Miyachi, W. Nakai, H. Nakajima, T. Nakatsu, M. Namba, Y. Nohara, Y. Hashimoto, Y. Ito, T. Sasaki, Y. Tachikawa, K. Takasaki, and K. Ueda for valuable discussions and comments. The authors express their deep gratitudes to M. Hamanaka, S. Moriyama, and A. Tsuchiya for their advices and warm encouragements, and especially to H. Kanno for suggesting a problem and reading the manuscript carefully. This work was started while the authors enjoyed the hospitality of the Fields Institute at University of Toronto on the fall of 2004. The authors are grateful to K. Hori for invitation. Throughout this work, the authors’ research was supported in part by COE program in mathematics at Nagoya University. Added in 2017. The authors thank the referees for useful comments. During the revision in 2017, S.M. is supported in part by Grant for Basic Science Research Projects from the Sumitomo Foundation and JSPS KAKENHI Grand number JP17K05228. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Combinatorial Study on Quiver Varieties uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис