Показати простий запис статті

dc.contributor.author Haese-Hill, W.A.
dc.contributor.author Hallnäs, M.A.
dc.contributor.author Veselov, A.P.
dc.date.accessioned 2019-02-18T16:10:46Z
dc.date.available 2019-02-18T16:10:46Z
dc.date.issued 2017
dc.identifier.citation On the Spectra of Real and Complex Lamé Operators / W.A. Haese-Hill, M.A. Hallnäs, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 34L40; 47A10; 33E10
dc.identifier.other DOI:10.3842/SIGMA.2017.049
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148577
dc.description.abstract We study Lamé operators of the form L=−d²/dx²+m(m+1)ω²℘(ωx+z₀), with m∈N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than m gaps. In the first part of the paper, we prove that the opened gaps are precisely the first m ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m=1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m=2 case, paying particular attention to the rhombic lattices. uk_UA
dc.description.sponsorship We are grateful to Jenya Ferapontov, John Gibbons and Anton Zabrodin for very useful and encouraging discussions, and especially to Boris Dubrovin, who many years ago asked one of us (APV) about the position of open gaps in the spectra of Lam´e operators. We would like to thank Professor Gesztesy for his interest in our work and for pointing out further relevant references, including [1] and [9]. The work of WAH was partially supported by the Department of Mathematical Sciences at Loughborough University as part of his PhD studies. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On the Spectra of Real and Complex Lamé Operators uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис