Показати простий запис статті
dc.contributor.author |
Chiba, H. |
|
dc.date.accessioned |
2019-02-18T15:51:51Z |
|
dc.date.available |
2019-02-18T15:51:51Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.025 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148562 |
|
dc.description.abstract |
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті