Показати простий запис статті

dc.contributor.author Taghavi-Chabert, A.
dc.date.accessioned 2019-02-18T15:47:04Z
dc.date.available 2019-02-18T15:47:04Z
dc.date.issued 2017
dc.identifier.citation Twistor Geometry of Null Foliations in Complex Euclidean Space / A. Taghavi-Chabert // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 32L25; 53C28; 53C12
dc.identifier.other DOI:10.3842/SIGMA.2017.005
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148560
dc.description.abstract We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Qⁿ of dimension n≥3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Qⁿ. Viewing complex Euclidean space CEⁿ as a dense open subset of Qⁿ, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CEⁿ can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison. uk_UA
dc.description.sponsorship The author would like to thank Boris Doubrov, Lionel Mason and Jan Slov´ak for helpful discussions and comments, and the anonymous referees for their reports. He is also grateful to Lukas Vokrınek and Andreas Cap for clarifying some aspects of Section 2.5. This work was funded by a GACR (Czech Science Foundation) post-doctoral grant GP14-27885P. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Twistor Geometry of Null Foliations in Complex Euclidean Space uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис