Показати простий запис статті

dc.contributor.author Liu, Chiu-Chu Melissa
dc.contributor.author Sheshmani, A.
dc.date.accessioned 2019-02-18T15:36:56Z
dc.date.available 2019-02-18T15:36:56Z
dc.date.issued 2017
dc.identifier.citation Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10
dc.identifier.other DOI:10.3842/SIGMA.2017.048
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148556
dc.description.abstract An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. uk_UA
dc.description.sponsorship The first author would like to thank Tom Graber for his suggestion of generalizing the computations for toric manifolds in [23] to GKM manifolds. The second author would like to thank the Columbia University for hospitality during his visits. We wish to thank Rahul Pandharipande for his comments on an earlier version of this paper. This work is partially supported by NSF DMS-1159416 and NSF DMS-1206667. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис