Показати простий запис статті
dc.contributor.author |
Liu, Chiu-Chu Melissa |
|
dc.contributor.author |
Sheshmani, A. |
|
dc.date.accessioned |
2019-02-18T15:36:56Z |
|
dc.date.available |
2019-02-18T15:36:56Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds / Chiu-Chu Melissa Liu, A. Sheshmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 14C05; 14D20; 14F05; 14J30; 14N10 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.048 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148556 |
|
dc.description.abstract |
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold. |
uk_UA |
dc.description.sponsorship |
The first author would like to thank Tom Graber for his suggestion of generalizing the computations for toric manifolds in [23] to GKM manifolds. The second author would like to thank the
Columbia University for hospitality during his visits. We wish to thank Rahul Pandharipande
for his comments on an earlier version of this paper. This work is partially supported by NSF
DMS-1159416 and NSF DMS-1206667. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті