Показати простий запис статті
dc.contributor.author |
Dereziński, J. |
|
dc.contributor.author |
Majewski, P. |
|
dc.date.accessioned |
2019-02-18T15:06:11Z |
|
dc.date.available |
2019-02-18T15:06:11Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.108 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148546 |
|
dc.description.abstract |
We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions. |
uk_UA |
dc.description.sponsorship |
We thank Tom Koornwinder and anonymous referees for useful remarks. J.D. gratefully acknowledges
financial support of the National Science Center, Poland, under the grant UMO2014/15/B/ST1/00126. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
From Conformal Group to Symmetries of Hypergeometric Type Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті