Показати простий запис статті
dc.contributor.author |
Ormerod, C.M. |
|
dc.contributor.author |
Rains, E.M. |
|
dc.date.accessioned |
2019-02-18T14:48:18Z |
|
dc.date.available |
2019-02-18T14:48:18Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Commutation Relations and Discrete Garnier Systems / C. M. Ormerod, E. M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 56 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 39A10; 39A13; 37K15 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.110 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148532 |
|
dc.description.abstract |
We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the factors. We also reparameterize these systems in terms of the image and kernel vectors at singular points to obtain a separate birational form. A distinguishing feature of this study is the presence of a symmetry condition on the associated linear problems that only appears as a necessary feature of the Lax pairs for the least degenerate discrete Painlevé equations. |
uk_UA |
dc.description.sponsorship |
The work of EMR was partially supported by the National Science Foundation under the grant
DMS-1500806. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Commutation Relations and Discrete Garnier Systems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті