Показати простий запис статті

dc.contributor.author Ormerod, C.M.
dc.contributor.author Rains, E.M.
dc.date.accessioned 2019-02-18T14:48:18Z
dc.date.available 2019-02-18T14:48:18Z
dc.date.issued 2016
dc.identifier.citation Commutation Relations and Discrete Garnier Systems / C. M. Ormerod, E. M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 56 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 39A10; 39A13; 37K15
dc.identifier.other DOI:10.3842/SIGMA.2016.110
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148532
dc.description.abstract We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the factors. We also reparameterize these systems in terms of the image and kernel vectors at singular points to obtain a separate birational form. A distinguishing feature of this study is the presence of a symmetry condition on the associated linear problems that only appears as a necessary feature of the Lax pairs for the least degenerate discrete Painlevé equations. uk_UA
dc.description.sponsorship The work of EMR was partially supported by the National Science Foundation under the grant DMS-1500806. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Commutation Relations and Discrete Garnier Systems uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис