Наукова електронна бібліотека
періодичних видань НАН України

Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Rajaratnam, K.
dc.contributor.author McLenaghan, R.G.
dc.contributor.author Valero, C.
dc.date.accessioned 2019-02-18T14:47:25Z
dc.date.available 2019-02-18T14:47:25Z
dc.date.issued 2016
dc.identifier.citation Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53C15; 70H20; 53A60
dc.identifier.other DOI:10.3842/SIGMA.2016.117
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148531
dc.description.abstract We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. We would like to thank the referees for their helpful comments and suggestions. This work was supported in part by a QEII-Graduate Scholarship in Science and Technology (KR), Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGM) and Undergraduate Student Research Award (CV). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис