Показати простий запис статті
dc.contributor.author |
Calogero, F. |
|
dc.date.accessioned |
2019-02-18T13:04:40Z |
|
dc.date.available |
2019-02-18T13:04:40Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Another New Solvable Many-Body Model of Goldfish Type / C. Calogero // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 16 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 37J35; 37C27; 70F10; 70H08 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.046 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148460 |
|
dc.description.abstract |
A new solvable many-body problem is identified. It is characterized by nonlinear Newtonian equations of motion (''acceleration equal force'') featuring one-body and two-body velocity-dependent forces ''of goldfish type'' which determine the motion of an arbitrary number N of unit-mass point-particles in a plane. The N (generally complex) values zn(t) at time t of the N coordinates of these moving particles are given by the N eigenvalues of a time-dependent N×N matrix U(t) explicitly known in terms of the 2N initial data zn(0) and z˙n(0). This model comes in two different variants, one featuring 3 arbitrary coupling constants, the other only 2; for special values of these parameters all solutions are completely periodic with the same period independent of the initial data (''isochrony''); for other special values of these parameters this property holds up to corrections vanishing exponentially as t→∞ (''asymptotic isochrony''). Other isochronous variants of these models are also reported. Alternative formulations, obtained by changing the dependent variables from the N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited. Some mathematical findings implied by some of these results – such as Diophantine properties of the zeros of certain polynomials – are outlined, but their analysis is postponed to a separate paper. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Another New Solvable Many-Body Model of Goldfish Type |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті