Показати простий запис статті

dc.contributor.author Calogero, F.
dc.date.accessioned 2019-02-18T13:04:40Z
dc.date.available 2019-02-18T13:04:40Z
dc.date.issued 2012
dc.identifier.citation Another New Solvable Many-Body Model of Goldfish Type / C. Calogero // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 16 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37J35; 37C27; 70F10; 70H08
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.046
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148460
dc.description.abstract A new solvable many-body problem is identified. It is characterized by nonlinear Newtonian equations of motion (''acceleration equal force'') featuring one-body and two-body velocity-dependent forces ''of goldfish type'' which determine the motion of an arbitrary number N of unit-mass point-particles in a plane. The N (generally complex) values zn(t) at time t of the N coordinates of these moving particles are given by the N eigenvalues of a time-dependent N×N matrix U(t) explicitly known in terms of the 2N initial data zn(0) and z˙n(0). This model comes in two different variants, one featuring 3 arbitrary coupling constants, the other only 2; for special values of these parameters all solutions are completely periodic with the same period independent of the initial data (''isochrony''); for other special values of these parameters this property holds up to corrections vanishing exponentially as t→∞ (''asymptotic isochrony''). Other isochronous variants of these models are also reported. Alternative formulations, obtained by changing the dependent variables from the N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited. Some mathematical findings implied by some of these results – such as Diophantine properties of the zeros of certain polynomials – are outlined, but their analysis is postponed to a separate paper. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Another New Solvable Many-Body Model of Goldfish Type uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис