Наукова електронна бібліотека
періодичних видань НАН України

A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Grünbaum, F.A.
dc.contributor.author Rahman, M.
dc.date.accessioned 2019-02-16T20:47:44Z
dc.date.available 2019-02-16T20:47:44Z
dc.date.issued 2011
dc.identifier.citation A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application / F.A. Grünbaum, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 33C45; 22E46; 33C45; 60J35; 60J05
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2011.119
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148084
dc.description.abstract The one variable Krawtchouk polynomials, a special case of the ₂F₁ function did appear in the spectral representation of the transition kernel for a Markov chain studied a long time ago by M. Hoare and M. Rahman. A multivariable extension of this Markov chain was considered in a later paper by these authors where a certain two variable extension of the F₁ Appel function shows up in the spectral analysis of the corresponding transition kernel. Independently of any probabilistic consideration a certain multivariable version of the Gelfand-Aomoto hypergeometric function was considered in papers by H. Mizukawa and H. Tanaka. These authors and others such as P. Iliev and P. Tertwilliger treat the two-dimensional version of the Hoare-Rahman work from a Lie-theoretic point of view. P. Iliev then treats the general n-dimensional case. All of these authors proved several properties of these functions. Here we show that these functions play a crucial role in the spectral analysis of the transition kernel that comes from pushing the work of Hoare-Rahman to the multivariable case. The methods employed here to prove this as well as several properties of these functions are completely different to those used by the authors mentioned above. uk_UA
dc.description.sponsorship The research of the first author was supported in part by the Applied Math. Sciences subprogram of the Of fice of Energy Research, USDOE, under Contract DE-AC03-76SF00098. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис