Показати простий запис статті

dc.contributor.author Gielen, S.
dc.date.accessioned 2019-02-16T12:44:16Z
dc.date.available 2019-02-16T12:44:16Z
dc.date.issued 2011
dc.identifier.citation The Space of Connections as the Arena for (Quantum) Gravity / S. Gielen // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 22E70; 51P05; 53C05; 53C80; 83C05; 83C45
dc.identifier.other http://dx.doi.org/10.3842/SIGMA.2011.104
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147988
dc.description.abstract We review some properties of the space of connections as the natural arena for canonical (quantum) gravity, and compare to the case of the superspace of 3-metrics. We detail how a 1-parameter family of metrics on the space of connections arises from the canonical analysis for general relativity which has a natural interpretation in terms of invariant tensors on the algebra of the gauge group. We also review the description of canonical GR as a geodesic principle on the space of connections, and comment on the existence of a time variable which could be used in the interpretation of the quantum theory. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collectionis available at http://www.emis.de/journals/SIGMA/LQGC.html. I should like to thank Daniele Oriti for initiating this study of the geometry of the space of connections and for fruitful discussions, and an anynomous referee for comments that led to an improvement of presentation, particularly concerning Hamiltonian dynamics. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title The Space of Connections as the Arena for (Quantum) Gravity uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис