Наукова електронна бібліотека
періодичних видань НАН України

Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Sheftel, M.B.
dc.contributor.author Yazıcı, D.
dc.date.accessioned 2019-02-16T09:21:32Z
dc.date.available 2019-02-16T09:21:32Z
dc.date.issued 2016
dc.identifier.citation Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański / M.B. Sheftel, D. Yazıcı // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 34 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 35Q75; 83C15; 37K05; 37K10
dc.identifier.other DOI:10.3842/SIGMA.2016.091
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147857
dc.description.abstract We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J0, we generate another two Hamiltonian operators J+ and J− and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J0, J+ and J− with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture. uk_UA
dc.description.sponsorship The research of M.B. Sheftel is partly supported by the research grant from Bo˘gazi¸ci University Scientific Research Fund (BAP), research project No. 11643. The authors are thankful to the referees for their important remarks. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис