Показати простий запис статті

dc.contributor.author Sahi, S.
dc.date.accessioned 2019-02-16T09:03:43Z
dc.date.available 2019-02-16T09:03:43Z
dc.date.issued 2007
dc.identifier.citation Raising and Lowering Operators for Askey-Wilson Polynomials / S. Sahi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 25 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 33D45; 33D52; 33D80
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147833
dc.description.abstract In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. We would like to thank the (anonymous) referee for several insightful suggestions which have improved the paper considerably. The referee has also pointed out that one can give an alternative proof of formulas (17) and (18) by combining Theorem 1 with the following identity relating the operators D and D`: [(1 − q²)D`z + q²D(z + z⁻¹) − q(z + z⁻¹)D] f = (1 − q) [(e₁ − e₃) − (1 − abcd)(z + z⁻¹)] f, which holds for all symmetric Laurent polynomials. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Raising and Lowering Operators for Askey-Wilson Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис