Показати простий запис статті

dc.contributor.author Glad, S.T.
dc.contributor.author Petersson, D.
dc.contributor.author Rauch-Wojciechowski, S.
dc.date.accessioned 2019-02-16T08:52:00Z
dc.date.available 2019-02-16T08:52:00Z
dc.date.issued 2007
dc.identifier.citation Phase Space of Rolling Solutions of the Tippe Top / S.T. Glad, D. Petersson, S. Rauch-Wojciechowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 14 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 70E18; 70E40; 70F25; 70K05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147821
dc.description.abstract Equations of motion of an axially symmetric sphere rolling and sliding on a plane are usually taken as model of the tippe top. We study these equations in the nonsliding regime both in the vector notation and in the Euler angle variables when they admit three integrals of motion that are linear and quadratic in momenta. In the Euler angle variables (θ,φ,ψ) these integrals give separation equations that have the same structure as the equations of the Lagrange top. It makes it possible to describe the whole space of solutions by representing them in the space of parameters (D,λ,E) being constant values of the integrals of motion. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. The authors would like to thank referees for useful suggestions and pointing some references. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Phase Space of Rolling Solutions of the Tippe Top uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис