Показати простий запис статті
dc.contributor.author |
Tanasa, A. |
|
dc.date.accessioned |
2019-02-15T19:09:54Z |
|
dc.date.available |
2019-02-15T19:09:54Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 05C90; 60B20; 81Q30; 81T99 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.056 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147752 |
|
dc.description.abstract |
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Tensor Models, Formalism and Applications. The full
collection is available at http://www.emis.de/journals/SIGMA/Tensor Models.html.
The author is partially supported by the grants ANR JCJC CombPhysMat2Tens and PN 09 37
01 02. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Multi-Orientable Random Tensor Model, a Review |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті