Показати простий запис статті
dc.contributor.author |
Beatson, R.K. |
|
dc.contributor.author |
W. zu Castell |
|
dc.date.accessioned |
2019-02-15T19:05:06Z |
|
dc.date.available |
2019-02-15T19:05:06Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
One-Step Recurrences for Stationary Random Fields on the Sphere / R.K. Beatson, W. zu Castell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 42A82; 33C45; 42C10; 62M30 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.043 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147744 |
|
dc.description.abstract |
This paper develops operators for zonal functions on the sphere which preserve (strict) positive definiteness while moving up and down in the ladder of dimensions by steps of one. These fractional operators are constructed to act appropriately on the Gegenbauer polynomials {Cλn}. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications.
The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html.
The authors thank the editor and the referees for their helpful suggestions. WzC acknowledges.
support from a University of Canterbury Visiting Erskine Fellowship. RKB is grateful for the
hospitality provided by the Helmholtz Zentrum M¨unchen. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
One-Step Recurrences for Stationary Random Fields on the Sphere |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті