Показати простий запис статті
dc.contributor.author |
Kalnins, E.G. |
|
dc.contributor.author |
Miller Jr., Willard |
|
dc.contributor.author |
Subag, E. |
|
dc.date.accessioned |
2019-02-15T18:56:59Z |
|
dc.date.available |
2019-02-15T18:56:59Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Bôcher Contractions of Conformally Superintegrable Laplace Equations / E.G. Kalnins, Willard Miller Jr., E. Subag // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81R05; 81R12; 33C45 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.038 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147737 |
|
dc.description.abstract |
The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4,C), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher's prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4,C) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paper [Acta Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications.
The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html.
This work was partially supported by a grant from the Simons Foundation (# 208754 to Willard
Miller Jr). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Bôcher Contractions of Conformally Superintegrable Laplace Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті