Наукова електронна бібліотека
періодичних видань НАН України

Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Manno, G.
dc.contributor.author Moreno, G.
dc.date.accessioned 2019-02-15T18:51:11Z
dc.date.available 2019-02-15T18:51:11Z
dc.date.issued 2016
dc.identifier.citation Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics / G. Manno, G. Moreno // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 29 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 53D10; 35A30; 58A30; 14M15
dc.identifier.other DOI:10.3842/SIGMA.2016.032
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147730
dc.description.abstract This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M⁽¹⁾ of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M⁽¹⁾. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The authors wish to express their gratitude towards the anonymous referees whose comments contributed to shape the paper into its final form. The authors thank C. Ciliberto, E. Ferapontov and F. Russo for stimulating discussions. The research of the first author has been partially supported by the project “Finanziamento giovani studiosi – Metriche proiettivamente equivalenti, equazioni di Monge–Amp`ere e sistemi integrabili”, University of Padova 2013–2015, by the project “FIR (Futuro in Ricerca) 2013 – Geometria delle equazioni dif ferenziali”. The research of the second author has been partially supported by the Marie Sk lodowska–Curie Action No 654721 “GEOGRAL”, by the University of Salerno, and by the project P201/12/G028 of the Czech Republic Grant Agency (GA CR). Both the authors are members of G.N.S.A.G.A. ˇ of I.N.d.A.M. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис