Показати простий запис статті
dc.contributor.author |
Schöbel, K. |
|
dc.date.accessioned |
2019-02-15T18:42:06Z |
|
dc.date.available |
2019-02-15T18:42:06Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70H06; 53A60; 53B20 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.024 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147721 |
|
dc.description.abstract |
The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour
of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html.
The author would like to acknowledge the anonymous referees for their contribution to improve
the paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Nijenhuis Integrability for Killing Tensors |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті